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Abstract. We generalize a model proposed by Xuet al for ruptures in an elastic medium
subject to shear stress. This model is applied to the study of earthquakes. We restrict ourselves
to one-dimensional discretizations of the region on which we focus and consider the effects of
disorder, degree of stress release and degree of stress nonconservation (dissipation). The one-
dimensional systems display power-law cumulative size–frequency distributions over a certain
range of size. The power laws cut off due to finite-size effects, i.e. the effects of the finite size
of the system and the finite size of the basic unit of discretization. In addition, in the absence
of disorder, there is a crossover region at small sizes and its origin is explained. The scaling
properties in the absence of dissipation are characterized by exponentsτ and ν as well as by
a functionf dependent on the parameters of the model.τ is associated with the cumulative
size–frequency distribution in the thermodynamic limit,ν with the finite size of the system and
f with the finite size of the basic unit of discretization. When stress dissipation is introduced
into the model, a characteristic earthquake size smaller than system size appears, in contrast
with the case in which stress dissipation is absent.

1. Introduction

A number of dynamical systems with many degrees of freedom reach a critical state
without parameter fine-tuning. This phenomenon is commonly referred to as self-organized
criticality (SOC) [1] and is characterized by power-law behaviour (scale invariance) in the
thermodynamic limit. As pointed out by Sornetteet al [2], many systems exhibiting SOC
can be mapped onto equivalent equilibrium systems exhibiting a continuous phase transition.
The absence of need for fine tuning of the parameter(s) arises because the system is driven
so that the order parameter takes on an infinitesimally small positive value, forcing the
system to be in the critical fluctuation regime. Finite-size scaling has proven immensely
successful in the study of ordinary critical phenomena. The analogy with SOC suggests
that the technique might be useful in analysing self-organized critical phenomena as well.

Bak and Tang [3] as well as Sornette and Sornette [4] were among the first to propose
that the concept of SOC applies to earthquakes. Sornette and Sornette [4] argued that
the structure of the earth’s crust could be viewed as resulting from a SOC phenomenon.
Bak and Tang [3] and Bak and Chen [5] demonstrated that simple stick-slip (short-range)
conservative models, similar to a model that had been proposed for earthquakes [6], evolve
to a self-organized critical state. However, in real earthquakes, fracture as well as friction
are two equally important processes. Fracture occurs when the earth’s crust yields as shear
stress builds up from the grinding of tectonic plates against each other. Friction controls the
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subsequent slipping along the faults formed. It is of interest to note that the incorporation
of fracture and friction in a unique model is a formidable task which is beyond the scope
of the present paper (however, see [7]).

In other models [8–10], only fracture is considered. These models, which have long-
range stress redistribution, are based on a continuum description of matter, and they have
many features in common with models presented in the context of the fracture of materials
[11]. The main difference between the above long-range models is that in [8] a dipole
source term is employed, while the correct double couple representation of the earthquake
source [12] is used in [9, 10]. The model of Xuet al [9, 10] is the one on which we will
focus in this work.

The mathematical structure of the model of Xuet al is related to the ones proposed by
Olami et al [13] and Lise and Jensen [14]. It is also related to integrate-and-fire models for
pulse-coupled oscillators [15, 16]. The model of Xuet al is different from the ones quoted
above in that a double couple source gives rise to long-range interactions, whereas [13] only
considers nearest neighbours, and [14] treats a situation where a relaxing element interacts
with a small number of randomly selected other elements. Integrate-and-fire models usually
assume interactions where the relaxingstress is either distributed equally to all the other
elements of the system [15] or short-range interactions [16], unlike elastic stress which is
long-range but falls off with distance. As we shall see, these differences are significant.

The aim of this paper is to study the scaling properties of the model of Xuet al [9, 10].
We consider one-dimensional discretizations and study the effects of disorder, degree of
stress release and degree of stress nonconservation (dissipation). The use of one-dimensional
lattices allows us to go to large lattice sizes, and to check if the scaling laws are valid over
the whole range of lattice sizes. Our motivation is that due to finite-size effects, the system
is never completely scale invariant. It is therefore important to sort out effects due to the
finite size of the system, and those due to the finite size of the basic unit of discretization.
This problem arises because systems of interest are heterogeneous on scales much smaller
than the discretization unit, so that the continuum limit is not meaningful. Quantities relating
to stress threshold, degree of stress release and degree of stress dissipation may therefore be
dependent upon the size of the discretization unit and the size of the system in a non-trivial
way. This type of dependence was realized by Weibull in his pioneering work [17], but has
since often been forgotten.

The organization of this paper is as follows. In section 2 we present a version of the
model of Xu et al along with a new ingredient to it (coarse-graining of the lattice Green
function used in the calculation of stress redistribution upon rupture). In section 3, we apply
this version of the model to the study of earthquakes and present our results in section 4.
Finally, we summarize these results and draw our conclusions in section 5.

2. The model

The model of Xu et al [9, 10] focuses on a planar region embedded in an infinite
medium, neglecting the effect of any activity originating outside the region (open boundary
conditions). The region of interest is divided intoL1 × L2 square units with the lattice
constant,a, taken to be unity. A displacement vector is defined on each node (corner of a
square) and the distortion of a unit is characterized by the strain tensor,u, which is defined
at its centre. Initially, all deformations are elastic and the stress tensor,σ, is related to the
strain tensor through the special Hooke’s law:

σij (r) = λ′δijull(r)+ 2µuij (r)
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whereµ is the shear modulus, andλ′ a Laḿe constant modified to take into account the
plane-stress geometry of the problem (see [18] for instance). Summation over repeated
indices(i, j = x, y) is implied.

In the quiescent periods, the force balance conditionDjσij = 0 must be satisfied on
each square, whereDx,y are the discrete derivatives, defined respectively as
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when acting on the arbitrary functiong(r), wherex̂ and ŷ are unit vectors oriented along
theX-axis andY -axis respectively. Now, assume that a rupture occurs at the square centred
at r0. We consider only one shear mode of rupture, which occurs when shear stressσxy at
r0 exceeds the stress threshold at that square. The additional shear stresses (σ ′ij ) caused by
the rupture are separated into an elastic part (σ elij ) and a non-elastic part (atr0 only). The
new stress tensor components can then be expressed as

σ new
ij (r) = σ old

ij (r)+ σ ′ij (r)
where

σ ′xy(r) = σ elxy(r)− f
√

2δr,r0 (1)

σ ′xx(r) = σ elxx(r) (2)

σ ′yy(r) = σ elyy(r). (3)

At equilibrium, σ new
ij (r) must also satisfy the force balance condition on each square and

as a result,

Djσ
′
ij = 0 (4)

sinceDjσ old
ij = 0. Using (1)–(3) in (4), it can be shown [10] that

Djσ
el
ij + Fdi = 0

where

Fdx =
f√

2
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− δr,r0+ x̂−ŷ2
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and

Fdy =
f√

2
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− δr,r0− x̂+ŷ2
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].

Therefore,σ elij can be viewed as being generated by the external sourceF d = (F dx , F
d
y ),

which is only non-zero at the corners of the ruptured unit, and is shown in figure 1(a) of
[10]. F d satisfies the conditions that its net force and net torque are zero, and thus is a
double couple [12] (a term used in seismology to describe the earthquake source).f is the
double couple force.

Next, σ elij (r) can be determined by using the above earthquake source and the method
of Fourier transformation. Sinceσ elxy(r) is theonly relevantcomponent of the stress tensor,
we drop the subscript (from now on, stress simply refers to the shear stress componentσxy).
It can be shown [10] that the redistributed field is given by

σ ′(r) ≡ σ ′xy(r) = −f̃ G(r − r0) (5)
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Figure 1. Log–log plot of the cumulative size–frequency
distributions forL× 1 lattices, randomσth, X = 0, θl = 0.25
andα = 1. For comparison, we show the curveC(S) = S−0.30.

wheref̃ = f√2(λ′ + µ)/(λ′ + 2µ) andG is a lattice Green function expressed as

G(r) =
∫ π

−π

dkx
2π

∫ π

−π

dky
2π

sin2 kx sin2 ky

(1− coskx cosky)2
eik·r. (6)

In the model, the unit of discretization may be sufficiently large that the whole unit will not
break in an individual rupture event. Instead, it will retain some shear stress. Assuming
that

σ new(r0) = Xσ old(r0)

whereX is the fraction of the original stress which is not released, (5) can be rewritten as

σ ′(r) = −(1−X)σ old(r0)G(r − r0)/G(0). (7)

The caseX = 0 corresponds to a rupture opening the whole element, as in [19]. The
interpretation of a rupture event and the scaling properties are somewhat different ifX 6= 0.
We expect that parameterX and the stress threshold distribution depend on the size of the
discretization unit. In fact, we can consider two discretizations of the same system, one
with a coarser mesh than the other. Then, a coarser mesh element ruptures more often than
a finer mesh element, but the total number of rupture events in the whole system is the
same. We will come back to these considerations below.

Often, a necessary condition for SOC is the existence of a conservation law [20] (stress
conservation in the present model). However, SOC has also been found in models with
apparently no such law [13, 21, 22]. Stress dissipation can be incorporated into the model
by multiplying σ ′(r) in (7) at allr exceptr0 by a factorα between 0.0 and 1.0. The effect
of α is to make a fraction of the stress disappear from the system during redistribution. In
addition, there is some stress which is redistributed outside the active region. The latter
fraction goes to zero in the limit where the size of the active region goes to infinity. In all
cases, the system organizes itself into a stationary state where on average the stress build-up
balances the stress which is removed from the active region.

After the original rupture atr0, which is followed by stress redistribution, it can happen
that the stress exceeds the stress threshold on several squares. We will then let them all break
independently and add the respective stress redistribution contributions. This procedure was
used as well in [8–10]. Other rules for the order in which the squares break might have
also been considered. For instance, we could have picked only the square whose stress
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exceeds its stress threshold most. We could, as well, have considered a self-consistent
scheme in which the redistributed stresses from different broken squares are coupled [19].
The problem of describing what happens during the short period when the system is out of
equilibrium during a rupture event is a difficult one (see [23]). We employ the independent
rupture procedure because it is the simplest.

2.1. Coarse-graining of the lattice Green function

The lattice constant (a) has been chosen to be unity, so the coordinates ofr− r0 in (7) can
be expressed as the set of integers(I, J ). It is easy to verify that the lattice Green function
(6) vanishes whenI+J is odd and is non-zero forI+J even. This unphysical property can
be overcome by a coarse-graining procedure.

We consider first a one-dimensional strip having 2L1 units. We imagine that one of
the elementary units (the source unit) breaks. During the redistribution which follows, we
mentally combine the units pairwise, so that there are nowL1 pairs of units in the lattice.
The lattice Green function associated with the pairs can be expressed as

Ḡ1(I, 0) = G(2I, 0)

where 2I is the distance between the left(right) source unit to a given left(right) unit (in unit
of a), andI = 0, 1, 2, . . . , L1 − 1 is the distance between the pairs (in unit of 2a). Note
thatG can be multiplied by a global constant without changing the redistributed stresses
[see (7)].G(I, 0) (I even) is a smooth function ofI which falls off approximately as 1/I 2

at largeI .
For completeness, it can be mentioned that in the case of a two-dimensional(2L1) ×

(2L2) lattice of squares havinga = 1, we can, during the redistribution which follows the
rupture of an elementary unit (source unit), generalize the above procedure by mentally
combining four of them such as to form a bigger square unit with lattice constanta = 2.
The lattice now hasL1 × L2 units with a = 2. The most natural coarse-grained lattice
Green function can be expressed as

Ḡ2(I, J ) = G(2I, 2J )+ 1
4[G(2I + 1, 2J + 1)+G(2I + 1, 2J − 1)

+G(2I − 1, 2J + 1)+G(2I − 1, 2J − 1)]

whereI = 0, 1, 2, . . . , L1− 1 andJ = 0, 1, 2, . . . , L2− 1.
Ḡ1 andḠ2 will be used in (7) to replaceG when the lattice of squares is one-dimensional

and two-dimensional respectively.

3. Application to the study of earthquakes

We now attempt to apply the model of section 2 to the study of earthquakes. The main
steps for this are:

(1) Initially, set the stresses on all units to zero.
(2) Initially, assign random numbers betweenθl and 1.0 to the stress thresholds (σth) of

the units (to simulate the heterogeneities of the earth’s crust). The random distribution of
stress thresholds will be taken as uniform.

(3) Drive the system, i.e. increase the stresses uniformly, until on a unit the stress
exceeds the stress threshold (this is called a rupture). An earthquake sequence thus begins
after a usually long stress build-up period (tectonic time scale).
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(4) Reset† the stress threshold of the ruptured unit to a random number betweenθl and
1.0 (rule I) or to the constant value 1.0 (rule II).

(5) Calculate the stress redistribution [using (7)].
(6) Check if other ruptures occur on the lattice afterwards. If so, then step 4 is repeated

for all the ruptured units.
(7) Repeat step 5 for all the rupture events (independently) and do step 6 again. The

earthquake sequence stops when the stress is lower than the stress threshold on all units.
(8) Count the number of units (S) that have ruptured during the earthquake sequence.S

is a measure of the magnitude of the earthquake, which is assumed to happen instantaneously
at the tectonic time scale. Note that if an element ruptures more than once during the
sequence, every occurrence is counted (unless otherwise specified).

(9) Go to step 3 to generate the next earthquake sequence.
In order to let the model reach a stationary state, a large number of earthquake sequences

are initially discarded. By generating a sufficient number of subsequent sequences, it can
be checked whether the cumulative size–frequency distribution obeys a Gutenberg–Richter
power law [24]

C(S) ∝ S−τ

whereC(S) is the fraction of sequences during whichS or more squares have ruptured, and
τ is the exponent of the power law. (It is, in fact, more common to use the size–frequency
distribution rather than the cumulative size–frequency distribution.τ must then be replaced
by τ + 1.)

The scaling properties of the model will be investigated by a finite-size-scaling analysis.
To do this, we try to fitC(S) via the form

C(S,L) = S−τ g[(S − 1)L−ν ] (8)

whereL is the largest dimension in the lattice,g a scaling function andν an exponent that
expresses how the finite-size effects scale with the size of the system‡. When comparing
systems with different parameter values, we also attempt

C(S,L) = S−τ g[(S − 1)L−ν/f (X, θl, α)]. (9)

The functionf is included to test our hypothesis that if the mesh size for a given system is
changed, then some of the parameter values must also be changed. The term(S− 1) in the
scaling function ensures thatg(0) = 1, i.e. when scaling, we map the size interval [1,∞)
on [0,∞).

4. Results

We consider lattices withL × L2 units, whereL2 = 1 (unless specified otherwise). The
parametersθl , X andα are allowed to vary. Also, the degree of disorder in the distribution
of stress thresholds can be changed by using one or the other resetting rules (see step 4
in section 3). Rule I maintains the degree of disorder of the initial distribution of stress
thresholds, whereas rule II makes disorder disappear after a small number of earthquake
sequences. The latter two cases will be respectively identified asrandomσth andconstant

† In earlier versions of the model of Xuet al [9, 10], they allowed for static fatigue to simulate fore- and
aftershocks, and a gradual annealing of the stress thresholds to simulate the spatial organization of faults. Since
we are mainly interested in scaling properties, here we employ only the simplest resetting rules.
‡ Some authors use the scaling formC(S,L) = L−βg(S/Lν). The two scaling forms are equivalent if we put
β = ντ .
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Figure 2. Log–linear scaling plots of the cumulative size–
frequency distributions forL× 1 andL× 2 lattices, random
σth, X = 0, θl = 0.25 andα = 1. All curves use the fitting
parameterτ = 0.30. For the left and middle curves, all
ruptures are counted while for the right curves, only ruptures
on distinct units are counted. The left curves were obtained
for L×2 lattices usingν = 1.38, the middle curves forL×1
lattices usingν = 1.38, and the right curves forL×1 lattices
usingν = 1.01.

σth. Finally, we let the model reach a stationary state by discarding the first 105 earthquake
sequences and include 106 sequences to do the finite-size-scaling analysis.

4.1. Conservative case (α = 1)

We show in figure 1C(S,L) for randomσth. The main features are the power-law behaviour
for small events, and theL-dependent fall-off of the frequency of large events. The power-
law behaviour extends over two or three decades. In figure 2, we note that the data sets of
figure 1 obey quite well the scaling behaviour predicted by (8) (see the middle curves). The
exponentτ = 0.30 was found and cannot be changed by more than 0.01 before there is a
noticeable deterioration in the data collapse. As can be seen from figure 1, this value ofτ

is smaller than the one obtained from a linear fit to the straight segment of the log–log plot
(especially forL = 200 andL = 400). However, the exponentτ is the same if we count
the number of ruptures on distinct units or if we count all ruptures. The exponentν, on the
other hand, is different in these two cases, as is the scaling functiong. When all ruptures
are counted, the same exponents are found for theL× 1 andL× 2 lattices, but the scaling
functions are different. We attempted a data collapse of the data sets forL× 1 andL× 2
lattices (when all ruptures are counted) by rescaling the horizontal axis for one of the sets,
but found it to be significantly worse than that of figure 2.

We now turn to the effect of having constant stress thresholds. From figure 3, we see
that large events become less common. We were unable to find a scaling function which
fits both small and large events forL× 1 lattices, no matter if all ruptures or only ruptures
on distinct units (results not shown) are counted. However, from figure 3, it is clear that
the shoulder broadens asL increases, soC(S,L) might scale withL if the small events
(S < 50) are not considered in the data collapse. We found that, forτ = 0.30 andν = 1.38
(values obtained above withL × 1 systems having randomσth), the scaling function (8)
works well with systems having constantσth when only the events withS > 50 are included
in the fit (results not shown). This shows in particular that exponentτ = 0.30 is universal
in the sense that it is independent of the degree of disorder in the model. On the other
hand, thecrossoverregion (S < 50) on figure 3 is not a universal feature since it appears
only for systems with constantσth. We have checked that the crossover region is a robust
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Figure 3. Log–log plot of the cumulative size–frequency
distributions forL×1 lattices, constantσth, X = 0, θl = 0.25
and α = 1. S < 50 is a crossover region and its origin is
explained in the text. It is of interest to note that beyond
S > 50, C(S,L) has a linear segment having a slope close
to 0.30. The linear segment beyondS > 50 gets longer asL
increases but cuts off at largeS. For comparison, we show a
curve proportional toS−0.30.

Figure 4. Distribution of the stress differencesδi
between nearest-neighbour elements of a 1000× 1
system with constantσth, X = 0, θl = 0.25 and
α = 1. Patches of various sizes are clearly seen for
small δi (i = 1, 2, . . . ,999). Focusing on theδi ’s
smaller than 0.01, then the two biggest patches have
sizes 61 (aroundi ≈ 800) and 46 (aroundi ≈ 600), so
the total number of elements at about the same stress
level is 62 and 47 in these two cases respectively.

feature which is not sensitive to the initial configuration of the model. Therefore, even if
an ensemble average of initial configurations is carried out (see [11]), the crossover region
remains.

To explain the presence of the crossover region on figure 3, we calculated the
stress differences between nearest-neighbour elements in a system with constantσth, i.e.
δi ≡ |σi+1 − σi | (i = 1, 2, . . . , L − 1 for an L × 1 system). Quantityδi was used by
Grassberger [25] in a study of the short-range model in [13]. Theδi ’s for a 1000×1 system
with constantσth are plotted in figure 4. In this figure, we observe a series of patches of
various sizes at smallδi . In particular, the two biggest patches have sizes 61 and 46, which
means that the number of elements at about the same stress level is 62 and 47 in these two
cases respectively. Assemblies of elements next to one another, which are at the same stress
level, will be referred to asgroupsof elements hereafter. As long as one element in a group
has its stress overσth, then the other elements in the group willlikely rupture in the same
sequence. We have checked that the groups of elements are not static features, i.e. they
do not in general involve the same elements at later times. Now, our explanation for the
presence of the crossover region (S < 50) in figure 3 goes like this: during an earthquake
sequence, when the broken elements are found mostly in a given group of elements or in
a couple of small groups of elements away from other groups in the system, then the size
of the sequence (S) is limited by the number of elements in the group(s), soS tends to be
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small (i.e. in the crossover region). In constrast, if broken elements are found mostly in
groups of appreciable sizes close to one another, thenS tends to be large. In summary, the
localized (versus delocalized) nature of the activity in a sequence determines whetherS is
small or large. This explanation is plausible considering the fact that we have noticed that,
for a 1000×2 system with constantσth, no crossover region is observed since the presence
of a second strip of elements allows the delocalization of the activity to take place. Along
the same line, systems with randomσth never display patches such as the ones in figure 4,
so the localization of the activity never happens. This explains why systems with random
σth always display simple cumulative size–frequency distributions (see figure 1).

We next investigate the effect of the parameterX controlling the fraction of stress
retained by a broken unit. The data collapses in figure 5 are seen to be quite good for
systems with randomσth. Also, for a fixedL, an increase inX extends the power law to
largerS. This makes sense because a largerX means that a ruptured element will retain
more stress, so it will be easier to have it involved in the near future in an earthquake
sequence (because stress remains close to stress threshold). As a result, the largest size for
an earthquake sequence increases. In figure 6, we show, for a 1000× 1 lattice and random
σth, a fit to the scaling form

C(S,L) = S−τ g[(S − 1)L−ν/f (X)].

The fit, although not perfect, implies that a system which has been discretized by a fine
mesh and a small value ofX (i.e. a ruptured unit almost opens) can be approximated by a
coarser mesh and a larger value ofX (i.e a smaller fraction of the stress is released by the
ruptured unit).

The effect of changing the lower boundθl for the stress threshold distribution is shown
in figure 7. The data collapses are very good for systems with randomσth. For a fixedL,
a decrease inθl extends the power law to largerS. Comparing figures 5 and 7, we see that,
for a givenL, an increase inX has much the same effect onC(S,L) as a decrease inθl .

Figure 5. Log–linear scaling plots of the cumulative
size–frequency distributions forL× 1 lattices, random
σth, θl = 0.25, α = 1 and two values ofX. Exponents
used areτ = 0.30 andν = 1.38.

Figure 6. Log–linear scaling plot of the cumulative
size–frequency distributions for a 1000× 1 lattice,
randomσth, θl = 0.25, α = 1 and three values of
X. Exponents used areτ = 0.30 andν = 1.38.
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Figure 7. Log–linear scaling plots of the cumulative size–
frequency distributions forL × 1 lattices, randomσth, X = 0,
α = 1 and two values ofθl . Exponents used areτ = 0.30 and
ν = 1.38.

We have also attempted a fit to the scaling form

C(S,L) = S−τ g[(S − 1)L−ν/f (θl)].

The quality of the fit is very similar to the one in figure 6 and is therefore not shown. We
obtain a reasonable fit for a 1000× 1 lattice and randomσth usingτ = 0.30 andν = 1.38.
If we choosef (θl) = 1 for θl = 0.5, we findf (θl) = 1.32 for θl = 0.25 andf (θl) = 1.64
for θl = 0.0. This result implies that a system which has been discretized by a fine mesh
and a large value ofθl , can be approximated by a coarser mesh using a smaller value ofθl .
We expect that this near equivalence can be made even better if we simultaneously adjust
bothX andθl .

We have also investigated the effects of changingX andθl in systems with constantσth.
Again, we fail to find a satisfactory scaling form which is valid for both small and large
events since a crossover region at smallS is still present. As we did above, we attempted
data collapses for variousX and θl by focusing only on the events outside the crossover
region and found that withτ = 0.30 andν = 1.38, the scaling function (8) works well.
This shows once more thatτ = 0.30 is a universal value.

Before we consider the case of non-conservative systems (α < 1), we comment on
the value obtained for exponentτ . We have obtained through a finite-size-scaling analysis
τ = 0.30± 0.01, which seems to be robust. This value can be compared with that in [26]
(0.31± 0.04), which was obtained with a long-range scalar model with quenched disorder
(stress thresholds are kept equal to their initial random values throughout a simulation).
Our value ofτ is in agreement with the latter, but is not in agreement with the value (0.4)
obtained by Xuet al [10] and Chenet al [8] for a two-dimensional system. However, their
value was determined approximately from a linear fit to the straight segment of the log–
log plot and not by a finite-size-scaling analysis, and so the comparison is not conclusive.
Finally, Christensen and Olami [27] obtained a different value (0.22± 0.05) through a
finite-size-scaling analysis of a short-range, two-dimensional model with constantσth [13].
Therefore, the models in [13] and [10] seem to belong to different universality classes.

4.2. Non-conservative case (α < 1)

In this section, we examine two effects forL×1 systems with randomσth and constantσth
whenX is fixed to 0 andθl to 0.25. The first one is the effect of parameterα for fixed L,
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Figure 8. Log–log plot of the cumulative size–
frequency distributions for a 2000× 1 lattice, random
σth, X = 0, θl = 0.25 and three values ofα.

Figure 9. Log–log plot of the cumulative size–
frequency distributions forL × 1 lattices, randomσth,
X = 0, θl = 0.25 andα = 0.94.

and the second is the effect ofL for a fixedα < 1.
In figure 8, we present cumulative size–frequency distributions for different values of

the parameterα controlling the level of stress nonconservation (or dissipation). It can be
seen on figure 8 for a 2000× 1 lattice with randomσth that a decrease inα makes the
power law cut-off happens at increasingly smallerS. Also, asα decreases, the slope of the
straight segment of the log-log plot increases, an effect which was also noticed in [27].

In figure 9, we showC(S,L) for α = 0.94, randomσth and different lattice sizes
(L). As expected, asL increases, the straight segment of the log–log plot extends to larger
S. However, a saturation is noticed forL = 2000–4000. We have attempted to fit the
cumulative size–frequency distribution for fixedL (andα) to

C(S) = S−τ exp[(1− S)/S0+ bS2+ cS3+ · · ·]. (10)

For largeL, we found that only the first term in the argument of the exponential is significant,
whereS0 is a characteristic earthquake size. In this case, (10) reduces to a form similar to
that used in [14]. In table 1, the values ofτ andS0 are given for various values ofα and
L. For a fixedα, S0 increases withL and appears to saturate, but certainlyS0(L) diverges
much slower thanL (S0(L) ∼ Lβ with β � 1). A similar conclusion was drawn by Jánosi
and Kert́esz [28] in a study of a version of the short-range model in [13], possibly with a
different value ofβ. From table 1, we also note that, for a fixedL, S0 increases withα and
τ increases asα decreases. We therefore corroborate quantitatively conclusions obtained
qualitatively from the curves in figure 8.

We have examined the above two effects for systems with constantσth as well. The
results obtained are not shown since the conclusions that can be drawn from them are
identical to those obtained for systems with randomσth. Again, as in the conservative case,
a crossover region is still observed. Then, a straight line can be fitted for fixedL andα
to the log–log plot ofC(S,L) for values ofS outside the crossover region (up to a cut-off
value much smaller than in the conservative case). We noted that the slope of the straight
segment increases and the cut-off value decreases asα decreases. Also, for a fixedα, we
found that the cut-off value saturates asL increases. Because the cut-off value for fixedL
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Table 1. Exponentτ and characteristic earthquake sizeS0 for L×1 lattices, randomσth, X = 0,
θl = 0.25 and three values ofα.

α L τ S0

0.94 4000 0.482 52.2
0.94 2000 0.477 50.0
0.94 1000 0.490 48.2
0.94 400 0.419 37.2
0.94 200 0.354 27.4
0.97 2000 0.428 115
0.97 1000 0.405 98.5
0.97 400 0.361 70.6
0.99 2000 0.386 407
0.99 1000 0.367 307
0.99 400 0.277 149

andα < 1 is smaller than in the caseα = 1, we can again associate a characteristic sizeS0

to C(S,L) [see (10)]. The saturation of the cut-off value asL increases and the fact that
S0(L) diverges much slower thanL are therefore expressing the same idea.

Finally, it was observed that simulations running for longer times are providing data
which are not altering our results. This is in contrast to a study of the short-range model
in [13], which found that the time for total invasion of the interior of large lattices by SOC
can be very large, especially for values ofα close to 0.0 [29]. We believe that because the
model of Xu et al is long-range, invasion is much faster than in the model in [13]. This
therefore confirms the above observation.

5. Summary and conclusions

We have studied a version of an earthquake model introduced by Xuet al in which only
one shear mode of rupture can occur. A new ingredient was added to the model by coarse-
graining the lattice Green function used in the computation of stress redistribution upon
rupture. The conclusions that can be drawn from our study involving one-dimensional
(L× 1) systems are the following: the finite-size-scaling function (8) works well over the
whole range ofS in the presence of disorder and forS larger than about 50 in the absence
of disorder. In the absence of disorder, there is a crossover region forS < 50 and it appears
whatever the parameter values. The existence of such a crossover region is related to the
localized nature of the activity on a group of elements or on a couple of small groups of
elements at about the same stress level isolated from any other group in the system. The
crossover region disappears for two-dimensional systems in the absence of disorder and as
soon as disorder is present in a system (both one-dimensional and two-dimensional).

The effects of parametersX andθl were also investigated and we found a fair agreement
with the finite-size-scaling function (9) over the whole range ofS in the presence of disorder
and forS larger than about 50 (outside the crossover region) in the absence of disorder. We
noticed also that an increase in the parameterX (parameter controlling the degree of stress
retained by a ruptured unit) has roughly the same effects on the cumulative size–frequency
distributions as a decrease inθl (parameter controlling the width of the uniform distribution
of stress thresholds).

The exponents of the finite-size-scaling functions (8) and (9) were found to be
τ = 0.30± 0.01 andν ≈ 1.38. This value ofτ is robust and in particular, it is independent
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of the degree of disorder in the system.
Introduction of stress nonconservation (controlled by parameterα) results in the

appearance of a characteristic earthquake size (S0), which is smaller thanL for largeL.
However, at least forα close to unity, it is possible thatS0(L) diverges asLβ with β � 1.
A similar conclusion was drawn by Jánosi and Kert́esz [28] (probably with a different value
of the exponent). For a fixedL, S0 increases withα and the exponentτ increases asα
decreases. The latter observation is in agreement with the findings of Christensen and Olami
[27]. The conclusions drawn from our results were found to be independent of the degree
of disorder in the system.

In the future, we plan to present an analysis of the time series obtained from the model
(e.g. earthquake size and average stress in the system as a function of tectonic time).
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